

Welcome to Django EnumChoiceField’s documentation!

For a quick example, check out the code below:

from enumchoicefield import ChoiceEnum, EnumChoiceField

class Fruit(ChoiceEnum):
 apple = "Apple"
 banana = "Banana"
 orange = "Orange"

class Profile(models.Model):
 name = models.CharField(max_length=100)
 favourite_fruit = EnumChoiceField(Fruit, default=Fruit.banana)

citrus_lovers = Profile.objects.filter(favourite_fruit=Fruit.orange)

Contents:

	Setup

	Usage

	EnumChoiceField

	Enum classes

	ORM Queries

	Using with the Django admin

Setup

django-enumchoicefield is compatible with Django 2.0 and higher,
and Python 3.4 and higher.

You can install django-enumchoicefield using pip:

$ pip install django-enumchoicefield

Usage

The following code outlines the most simple usecase of EnumChoiceField:

from enumchoicefield import ChoiceEnum, EnumChoiceField

class Fruit(ChoiceEnum):
 apple = "Apple"
 banana = "Banana"
 orange = "Orange"

class Profile(models.Model):
 name = models.CharField(max_length=100)
 favourite_fruit = EnumChoiceField(Fruit, default=Fruit.banana)

citrus_lovers = Profile.objects.filter(favourite_fruit=Fruit.orange)

The enumerations should extend the ChoiceEnum class.
For each member in the enumeration, their human-readable name should be their value.
This human-readable name will be used when presenting forms to the user.

For more advanced usage, refer to the documentation on
EnumChoiceField, Enum classes, or ORM Queries.

EnumChoiceField

	
class enumchoicefield.fields.EnumChoiceField(enum_class, ...)

	Create an EnumChoiceField. This field generates choices from an enum.Enum [https://docs.python.org/3.5/library/enum.html#enum.Enum].

The EnumChoiceField extends django.db.models.Field [https://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field].
It accepts one additional argument:
enum_class, which should be a subclass of enum.Enum [https://docs.python.org/3.5/library/enum.html#enum.Enum].
It is recommended that this enum subclasses
ChoiceEnum,
but this is not required.

When saving enum members to the database, The chosen member is stored
in the database using its name attribute. This keeps the database
representation stable when adding and removing enum members.

A max_length is automatically generated from the longest name.
If you add a new enum member with a longer name, or remove the longest member,
the generated max_length will change.
To prevent this, you can manually set a max_length argument,
and this will be used instead.

If a default choice is supplied,
the enum class must have a deconstruct method.
If the enum inherits from DeconstructableEnum,
this will be handled for you.

The display value for the Enums is taken from
the str representation of each value.
By default this is something like MyEnum.foo,
which is not very user friendly.
PrettyEnum makes defining
a human-readable str representation easy.

Enum classes

	
class enumchoicefield.enum.PrettyEnum

	A PrettyEnum makes defining nice, human-readable names
for enum members easy.
To use it, subclass PrettyEnum and
declare the enum members with their human-readable name as their value:

class Fruit(PrettyEnum):
 apple = "Apple"
 banana = "Banana"
 orange = "Orange"

The members’ values will be automatically set to ascending integers,
starting at one.
In the example above,
Fruit.apple.value is 1, and
Fruit.orange.value is 3.

	
class enumchoicefield.enum.DeconstructableEnum

	
	
deconstruct()

	a DeconstructableEnum defines deconstruct(),
compatible with Django migrations.
If you want to set a default for an
EnumChoiceField,
the enum must be deconstructable.

	
class enumchoicefield.enum.ChoiceEnum

	a ChoiceEnum extends both
PrettyEnum and DeconstructableEnum.
It is recommended to use a ChoiceEnum subclass with
EnumChoiceField,
but this is not required.

ORM Queries

You can filter and search for enum members using standard Django ORM queries.
The following queries demonstrate some of what is possible:

from enumchoicefield import ChoiceEnum, EnumChoiceField

class Fruit(ChoiceEnum):
 apple = "Apple"
 banana = "Banana"
 lemon = "Lemon"
 lime = "Lime"
 orange = "Orange"

class Profile(models.Model):
 name = models.CharField(max_length=100)
 favourite_fruit = EnumChoiceField(Fruit, default=Fruit.banana)

apple_lovers = Profile.objects.filter(favourite_fruit=Fruit.apple)
banana_haters = Profile.objects.exclude(favourite_fruit=Fruit.banana)

citrus_fans = Profile.objects.filter(
 favourite_fruit__in=[Fruit.orange, Fruit.lemon, Fruit.lime])

Ordering

Ordering on a EnumChoiceField field
will order results alphabetically by the names of the enum members,
which is probably not useful.
To order results by an enum value,
enumchoicefield.utils.order_enum() can be used.

	
enumchoicefield.utils.order_enum(field, members)

	Make an annotation value that can be used to sort by an enum field.

	field
	The name of an EnumChoiceField.

	members
	An iterable of Enum members in the order to sort by.

Use like:

desired_order = [MyEnum.bar, MyEnum.baz, MyEnum.foo]
ChoiceModel.objects\
 .annotate(my_order=order_enum('choice', desired_order))\
 .order_by('my_order')

As Enums are iterable, members can be the Enum itself
if the default ordering is desired:

ChoiceModel.objects\
 .annotate(my_order=order_enum('choice', MyEnum))\
 .order_by('my_order')

Any enum members not present in the list of members
will be sorted to the end of the results.

Undefined behaviour

Internally, the enum member is stored as a CharField
using the name attribute.
Any operation that CharFields support are also supported by an
EnumChoiceField.
Not all of these operations make sense,
such as contains, gt, and startswith,
and may not behave in a sensible manner.

Using with the Django admin

EnumChoiceFields
are compatible with the Django admin out of the box,
with one exception. If you want to use a
EnumChoiceField
in a list_filter [https://docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_filter], you need to use the
EnumListFilter.

	
class enumchoicefield.admin.EnumListFilter(*args, **kwargs)

	A FieldListFilter for use in Django admin in combination with an
EnumChoiceField. Use like:

class FooModelAdmin(ModelAdmin):
 list_filter = [
 ('enum_field', EnumListFilter),
]

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 enumchoicefield	

 	
 	
 enumchoicefield.enum	

 	
 	
 enumchoicefield.fields	

 	
 	
 enumchoicefield.utils	

Index

 C
 | D
 | E
 | O
 | P

C

 	
 	ChoiceEnum (class in enumchoicefield.enum)

D

 	
 	deconstruct() (enumchoicefield.enum.DeconstructableEnum method)

 	
 	DeconstructableEnum (class in enumchoicefield.enum)

E

 	
 	EnumChoiceField (class in enumchoicefield.fields)

 	enumchoicefield.enum (module)

 	
 	enumchoicefield.fields (module)

 	enumchoicefield.utils (module)

 	EnumListFilter (class in enumchoicefield.admin)

O

 	
 	order_enum() (in module enumchoicefield.utils)

P

 	
 	PrettyEnum (class in enumchoicefield.enum)

 nav.xhtml

 Table of Contents

 		
 Welcome to Django EnumChoiceField’s documentation!

 		
 Setup

 		
 Usage

 		
 EnumChoiceField

 		
 Enum classes

 		
 ORM Queries

 		
 Ordering

 		
 Undefined behaviour

 		
 Using with the Django admin

_static/minus.png

_static/plus.png

_static/file.png

